# **SNAPSHOT**

GEOMETRY



#### **Mathematical Process Standards**

G.1 Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding.

#### **Tools to Know**

- G.1(A) apply mathematics to problems arising in everyday life, society, and the workplace
- G.1(B) use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution
- G.1(C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems

# Coordinate and Transformational Geometry

Connected Knowledge and Skills G.12

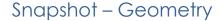
- G.2 Coordinate and transformational geometry. The student uses the process skills to understand the connections between algebra and geometry and uses the one- and two-dimensional coordinate systems to verify geometric conjectures.
- G.3 Coordinate and transformational geometry. The student uses the process skills to generate and describe rigid transformations (translation, reflection, and rotation) and non-rigid transformations (dilations that preserve similarity and reductions and enlargements that do not preserve similarity).

| Readiness Standards                                                                                    | Supporting Standards                                                                                               |  |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
| G.2(B) derive and use the distance, slope, and midpoint formulas to verify geometric relationships,    | G.2(A) determine the coordinates of a point that is a given fractional distance less than one from one end         |  |
| including congruence of segments and parallelism or perpendicularity of pairs of lines                 | of a line segment to the other in one- and two-dimensional coordinate systems, including finding                   |  |
| G.2(C) determine an equation of a line parallel or perpendicular to a given line that passes through a | the midpoint                                                                                                       |  |
| given point                                                                                            | G.3(A) describe and perform transformations of figures in a plane using coordinate notation                        |  |
| G.3(B) determine the image or pre-image of a given two-dimensional figure under a composition of rigid | G.3(C) identify the sequence of transformations that will carry a given pre-image onto an image on and             |  |
| transformations, a composition of non-rigid transformations, and a composition of both, including      | off the coordinate plane                                                                                           |  |
| dilations where the center can be any point in the plane                                               | G.3(D) identify and distinguish between reflectional and rotational symmetry in a plane figure                     |  |
|                                                                                                        | G.12(E) show that the equation of a circle with center at the origin and radius $r$ is $x^2 + y^2 = r^2$ and       |  |
|                                                                                                        | determine the equation for the graph of a circle with radius r and center $(h, k)$ , $(x - h)^2 + (y - k)^2 = r^2$ |  |

## **Logical Argument and Constructions**

relationships to solve problems

Connected Knowledge and Skills G.12


- **G.4** Logical argument and constructions. The student uses the process skills with deductive reasoning to understand geometric relationships.
- **G.5** Logical argument and constructions. The student uses constructions to validate conjectures about geometric figures.
- G.6 Proof and congruence. The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two-column, paragraph, and flow chart.

| G.4(C) | verify that a conjecture is false using a counterexample                                               |  |
|--------|--------------------------------------------------------------------------------------------------------|--|
| G.5(A) | A) investigate patterns to make conjectures about geometric relationships, including angles formed     |  |
|        | by parallel lines cut by a transversal, criteria required for triangle congruence, special segments of |  |
|        | triangles, diagonals of quadrilaterals, interior and exterior angles of polygons, and special          |  |
|        | segments and angles of circles choosing from a variety of tools                                        |  |
| G.6(A) | verify theorems about angles formed by the intersection of lines and line segments, including          |  |
|        | vertical angles, and angles formed by parallel lines cut by a transversal and prove equidistance       |  |

between the endpoints of a segment and points on its perpendicular bisector and apply these

- G.4(A) distinguish between undefined terms, definitions, postulates, conjectures, and theorems
- G.4(B) identify and determine the validity of the converse, inverse, and contrapositive of a conditional statement and recognize the connection between a biconditional statement and a true conditional statement with a true converse
- G.4(D) compare geometric relationships between Euclidean and spherical geometries, including parallel lines and the sum of the angles in a triangle
- G.5(B) construct congruent segments, congruent angles, a segment bisector, an angle bisector, perpendicular lines, the perpendicular bisector of a line segment, and a line parallel to a given line through a point not on a line using a compass and a straightedge
- G.5(C) use the constructions of congruent segments, congruent angles, angle bisectors, and perpendicular bisectors to make conjectures about geometric relationships
- G.5(D) verify the Triangle Inequality theorem using constructions and apply the theorem to solve
- prove a quadrilateral is a parallelogram, rectangle, square, or rhombus using opposite sides, opposite angles, or diagonals and apply these relationships to solve problems
- G.12(A) apply theorems about circles, including relationships among angles, radii, chords, tangents, and secants, to solve non-contextual problems

© lead4ward Source: Texas Education Agency v. 4.27.20 pg. 1 of 3





## **Triangles and Trigonometry**

Connected Knowledge and Skills G.5

- **G.6 Proof and congruence.** The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two-column, paragraph, and flow chart.
- **G.7** Similarity, proof, and trigonometry. The student uses the process skills in applying similarity to solve problems.
- **G.8 Similarity, proof, and trigonometry.** The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two-column, paragraph, and flow chart.
- G.9 Similarity, proof, and trigonometry. The student uses the process skills to understand and apply relationships in right triangles.

|        | Readiness Standards                                                                                                                                                                                    | Supporting Standards                                                                                                                                                  |      |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| G.5(A) | investigate patterns to make conjectures about geometric relationships, including angles formed by parallel lines cut by a transversal, criteria required for triangle congruence, special segments of | G.6(C) apply the definition of congruence, in terms of rigid transformations, to identify congruent fig and their corresponding sides and angles                      | ures |
|        | triangles, diagonals of quadrilaterals, interior and exterior angles of polygons, and special                                                                                                          | G.6(D) verify theorems about the relationships in triangles, including proof of the Pythagorean Theorems                                                              |      |
| G.6(B) | segments and angles of circles choosing from a variety of tools prove two triangles are congruent by applying the Side-Angle-Side, Angle-Side-Angle, Side-Side-                                        | the sum of interior angles, base angles of isosceles triangles, midsegments, and medians, and apply these relationships to solve problems                             |      |
| , ,    | Side, Angle-Angle-Side, and Hypotenuse-Leg congruence conditions                                                                                                                                       | G.7(A) apply the definition of similarity in terms of a dilation to identify similar figures and their                                                                |      |
| G.7(B) | apply the Angle-Angle criterion to verify similar triangles and apply the proportionality of the corresponding sides to solve problems                                                                 | proportional sides and the congruent corresponding angles  G.8(A) prove theorems about similar triangles, including the Triangle Proportionality theorem, and a       | ylgg |
| G.9(A) | determine the lengths of sides and measures of angles in a right triangle by applying the                                                                                                              | these theorems to solve problems                                                                                                                                      |      |
| G.9(B) | trigonometric ratios sine, cosine, and tangent to solve problems apply the relationships in special right triangles 30°-60°-90° and 45°-45°-90° and the Pythagorean                                    | G.8(B) identify and apply the relationships that exist when an altitude is drawn to the hypotenuse of right triangle, including the geometric mean, to solve problems | a    |
|        | theorem, including Pythagorean triples, to solve problems                                                                                                                                              |                                                                                                                                                                       |      |

## Measurement of 2D and 3D Figures

- G.10 Two-dimensional and three-dimensional figures. The student uses the process skills to recognize characteristics and dimensional changes of two- and three-dimensional figures.
- G.11 Two-dimensional and three-dimensional figures. The student uses the process skills in the application of formulas to determine measures of two- and three-dimensional figures.
- G.12 Circles. The student uses the process skills to understand geometric relationships and apply theorems and equations about circles.
- G.10(B) determine and describe how changes in the linear dimensions of a shape affect its perimeter, area, surface area, or volume, including proportional and non-proportional dimensional change
- G.11(B) determine the area of composite two-dimensional figures comprised of a combination of triangles, parallelograms, trapezoids, kites, regular polygons, or sectors of circles to solve problems using appropriate units of measure
- G.11(C) apply the formulas for the total and lateral surface area of three-dimensional figures, including prisms, pyramids, cones, cylinders, spheres, and composite figures, to solve problems using appropriate units of measure
- G.11(D) apply the formulas for the volume of three-dimensional figures, including prisms, pyramids, cones, cylinders, spheres, and composite figures, to solve problems using appropriate units of measure
- G.10(A) identify the shapes of two-dimensional cross-sections of prisms, pyramids, cylinders, cones, and spheres and identify three-dimensional objects generated by rotations of two-dimensional shapes
- G.11(A) apply the formula for the area of regular polygons to solve problems using appropriate units of measure
- G.12(B) apply the proportional relationship between the measure of an arc length of a circle and the circumference of the circle to solve problems
- G.12(C) apply the proportional relationship between the measure of the area of a sector of a circle and the area of the circle to solve problems
- G.12(D) describe radian measure of an angle as the ratio of the length of an arc intercepted by a central angle and the radius of the circle

## **Probability**

- G.13 Probability. The student uses the process skills to understand probability in real-world situations and how to apply independence and dependence of events.
- G.13(C) identify whether two events are independent and compute the probability of the two events occurring together with or without replacement
- G.13(A) develop strategies to use permutations and combinations to solve contextual problems
- G.13(B) determine probabilities based on area to solve contextual problems
- G.13(D) apply conditional probability in contextual problems
- G.13(E) apply independence in contextual problems

© lead4ward Source: Texas Education Agency v. 4.27.20 pg. 2 of 3





## **Mathematical Process Standards**

G.1 Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding.

# **Ways to Show**

- G.1(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate
- G.1(E) create and use representations to organize, record, and communicate mathematical ideas
- G.1(F) analyze mathematical relationships to connect and communicate mathematical ideas
- G.1(G) display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication

NOTE: The classification of standards on this Snapshot represents the reviewed and synthesized input of a sample of Texas Math teachers. This Snapshot DOES NOT represent a publication of the Texas Education Agency. District curriculum may reflect other classifications.